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Existing methods often limited by the recommender
system’s direct exposure and inactive interactions, and thus
fail to mine all potential user interests.

To tackle these problems, we propose Neighbor
Interaction based CTR prediction (NI-CTR), which
considers this task under a Heterogeneous Information
Network (HIN) setting.
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Figure 1: An illustration of the constructed HIN. It contains
four kinds of nodes (OAccount, article, user and video) and
three kinds of edges (click, publish and subscribe).
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Figure 2: Overview of NI-CTR. Given a target user-item pair, we first perform neighbour sampling in the HIN to obtain associ-
ated neighbours. Then we retrieve the corresponding entity features and construct interaction graphs based on the neighbours.
After that, we apply a Graph-Masked Transformer to encode both the feature information and topological information. A bi-

nary cross-entropy loss and a consistency regularization loss are combined to optimize the network.
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\&/---,‘..?;' Neighbour Sampling in HIN:
Target Pair (u,v)
?;:ﬁ;ogm GHNSampling iteratively samples a list
Interaction of nodes for a target node r from one hop to further. Let {sk}lq'-"I
e S;?,‘;‘;m denotes the budget sampling sizes for each node type, C. denotes
oA . the neighbours of type k we have already sampled. GHNSampling
( = & ! greedily retrieves nodes from 1-hop to further until meeting the
\&& budget. In l-}h hop, wle retrieleve all the neighbours of nodes in (I—1)-
Neig;{b = I-E&&Jiv;; th hop as 8B°, with B8, C B as retrieved nodes of type k. For node
8 - J t e B , we calculate the number of nodes it connects in the sampled
node set C as f; = |{s|(s,t) € & s € C}. If | Bf| > s — |Cil, we
Problem Definition: sample s;. — |Ci| nodes from B,Ic with the probability proportional
to f;. We iteratively run the steps until budges of all node types
users: u = {uq, Uy, ... Uy} are met.

items: 1 = {vq, vy, ... Uy}

user-item interactions: Y € RMxN
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Figure 3: Four types of interaction graphs for neighbour-
hood modeling, which contain natural interactions, feature
similarities, cross-neighbourhood interactions and all pair-

wise interactions.
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Heterogeneous Node Feature Transformation layer:

xi = Wif; User or item: [fy, - -, fi]
h; = Linear”"}(xg], (1)

Graph-masked Multi-head Self-attention:

FEfyY I T a

~_ (Ohy)" (Kh;) h;) T (Kh;
€ij = Vi ’ €ij =fm[(Q Li_; },MU}, (3)
s = fxp{e” L A A%0
; exple)’ fm(x,2) = o (4)
Z; = ij(Vh;
;ai( : Zi= FFN{WDCnncat(zg,n- ,z‘H}}, (5)

Z = {zl’zz"“’leuu|}‘

guv = Readout(Z), (6)
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f Feedforward ".I | B
_— e\ z° = Concat(gyo, Xy, Xy, C). (7)
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Table 1: Statistics of the WeChat HIN

Node type | Count | Fields | Features®

User 728M | 75 147572

OAcc 369K | 95 187323

Article 74M 26 148284

Video 846K 23 134758

Edge Type Count | Ave Src Deg | Ave Dst Deg
user-video 998M | 1.35 1167.08
user-article | 11.3B | 15.53 151.25
user-OAcc 33.9B | 46.67 9726.76
OAcc-video | 50M 1.43 5.91
OAcc-article | 74.7M | 21.39 1.0

“Here we do not count in any entity (user/OAcc/article/video) ids, which would be

extremely large.
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Table 2: Results on offline datasets

Category Model WC_FULL WC_SMALL Tmall
AUC Logloss | AUC Logloss | AUC | Logloss
FI DeepFM 0.7009 | 0.2379 0.7022 | 0.2365 0.9012 | 0.1999
xDeepFM 0.7021 | 0.2370 0.7042 | 0.2354 0.9023 | 0.1978
DIN 0.7042 | 0.2345 0.7073 | 0.2320 0.9034 | 0.1954
UIM DIEN 0.7043 | 0.2347 0.7069 | 0.2334 0.9045 | 0.1943
DMER 0.7098 | 0.2280 0.7089 | 0.2310 0.9065 | 0.1926
GraphSAGE | 0.7032 | 0.2366 0.7056 | 0.2378 0.9234 | 0.1789
GNN GAT 0.7130 | 0.2214 0.7145 | 0.2210 0.9245 | 0.1776
RGCN 0.7078 | 0.2289 0.7101 | 0.2265 0.9201 | 0.1801
HAN 0.7015 | 0.2378 0.7041 | 0.2399 0.9180 | 0.1823
NIRec 0.7149 | 0.2200 0.7167 | 0.2197 0.9246 | 0.1775
Transformer | 0.7200 | 0.2174 0.7260 | 0.2075 0.9339 | 0.1700
Transformer Graph-Trans | 0.7201 | 0.2175 0.7277 | 0.2063 0.9321 | 0.1715
Graph-BERT | 0.7211 | 0.2165 0.7290 | 0.2054 0.9345 | 0.1693
GMT 0.7290 | 0.2103 | 0.7360 | 0.2014 | 0.9410 | 0.1603
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Table 3: Ablation results of each module on WC_FULL
dataset

0.7301 Modules WC_FULL

0.7251 Gi, G, G GL, CRLoss | AUC | Logloss
o v v v v 0.7290 | 0.2103
2 0.7201 V4 0.7180 | 0.2193

_ v 0.7179 | 0.2193

e 0.7211 | 0.2154

0.710—=8 r v ” = 0.7203 0.2157

0.7243 | 0.2132
0.7252 | 0.2126
0.7237 | 0.2149
0.7263 | 0.2123
0.7274 0.2116
0.7200 0.2174

Figure 4: Results of graph sampling methods. N: Node-wise
sampling; L: Layer-wise sampling; M: Metapath sampling; H:
HGSampling; G: GHSampling.
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Figure 5: Results of different maximum numbers of sampled
nodes in the subgraph.

Figure 6: Results of different similarity graphs, where W de-
notes weighted similarity graph, and K-n denotes k-NN sim-
ilarity graph with k = n.
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Figure 7: Results of different feature exploitation strategies
with varied threshold value K.
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Figure 9: Results from Online A/B test during 10 consecutive
days. The red curve is our method.
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